माना निर्माणकर्ता नट के x पैकेट तथा बोल्ट के y पैकेटों का निर्माण करता है। तो निर्माणकर्ता को लाभ Z = Rs (17.5x + 7y)
अतः स्पष्ट है कि x≥0, y≥0 अब दिये गये आँकड़ों से निम्न सारणी बनाते हैं।
अत: निम्न व्यवरोध प्राप्त होते हैं।
x + 3y ≤ 12 मशीन A के लिए
3x + y ≤ 12 मशीन B के लिए
अत: गणितीय समस्या का सूत्रीकरण निम्नलिखित है
Z = Rs (17.5x + 7y) का अधिकतमीकरण कीजिए जबकि निम्नलिखित व्यवरोध हैं।
x + 3y ≤ 12 …(i)
3x + y ≤ 12 …(ii)
x ≥ 0,y ≥ 0 …(iii)
असमिकाओं (i) से (iii) तक के आलेखों द्वारा निर्धारित सुसंगत क्षेत्र चित्र में दर्शाया गया है।

स्पष्ट है कि सुसंगत क्षेत्र परिबद्ध है।
अब हम कोनीय बिन्दुओं (0, 0), (4,0), (3, 3) और (0, 4) पर Z का मान ज्ञात करते हैं।

उपर्युक्त सारणी से स्पष्ट है कि बिन्दु (3, 3) पर Z का मान अधिकतम Rs 73.5 है।
अतः निर्माणकर्ता को 3 बोल्ट के पैकेट व 3 नटों के पैकेटों का निर्माण करना चाहिए ताकि अधिकतम लाभ Rs 73.5 हो।