
Let ABCD be the quadrilateral from which a circular sheet is cut off touching each side of the quadrilateral.
Also, given AB + BC + CD + DA = 2p ...(i)
Circumference of the circle = 2πr ⇒ Radius of circle = r
∴ Area of quadrilateral = Area of (ΔOAB + ΔOBC + ΔOCD + ΔODA)
= \(\frac{1}{2}\) r (AB) + \(\frac{1}{2}\) r (BC) + \(\frac{1}{2}\) r (CD) + \(\frac{1}{2}\) r (DA)
= \(\frac{1}{2}\) r (AB + BC + CD + DA) = \(\frac{1}{2}\) r 2p = pr.
∴ Required remaining area = Area of quadrilateral – Area of circle = pr – πr2 = r(p – πr).