(a) (873 – 504√3) cm2.
Since ∠CPO = ∠COP = 60º, therefore, PCO is also an equilateral triangle.
Let each side of the square MNOP be x cm.
Then PC = CO = PO = x cm

Then in ΔPAM,
\(\frac{PM}{PA}\) = sin 60º
⇒ \(\frac{x}{PA}\) = \(\frac{\sqrt3}{2}\) ⇒ PA = \(\frac{2x}{\sqrt3}\)
∴ AC = AP + PC = \(\frac{2x}{\sqrt3}\) + \(x\)
Given \(\frac{2x}{\sqrt3}\) + \(x\) = 0.01 m = 1 cm
⇒ \(x\) = \(\frac{\sqrt3}{(2+\sqrt3)}\) cm = √3 (2 - √3) cm .....(i)
(On rationalising the denominator)
Now, let each side of the square RSXY be y. Then RT = y
(∵ RTS is an equilateral triangle)
∴ In ΔRYM, \(\frac{RY}{RM}\) = sin 60º
⇒ \(\frac{y}{RM}\) = \(\frac{\sqrt3}{2}\) ⇒ RM = \(\frac{2y}{\sqrt3}\)
∴ MT = MR + RT = \(\frac{2y}{\sqrt3}\) + y = \(\frac{(2+\sqrt3)}{\sqrt3}y\)
Given MT = x, then
x = \(\bigg(\frac{2+\sqrt3}{\sqrt3}\bigg)y\) ⇒ y = \(\frac{\sqrt3x}{2+\sqrt3}\)
But from (i), x = √3(2 - √3)
∴ y = \(\frac{\sqrt3\sqrt3(2-\sqrt3)}{2+\sqrt3}\) = \(\frac{3.(2-\sqrt3)}{2+\sqrt3}\).\(\frac{(2-\sqrt3)}{(2-\sqrt3)}\)
⇒ y = 3(2 - √3)2 = 3(7 - 4√3)
∴ Area of the inner most square = y2
= \(\big(3(7-4\sqrt2)\big)^2\)
= 9(49 + 48 – 56√3) = (873 – 504√3) cm2.