S1 = \(\frac{n(n+1)}{2}\), S2 = \(\frac{n(n+1)(2n+1)}{6}\), S3 = \(\frac{n^2(n+1)^2}{2}\)
∴ \(9S^2_2\) = \(9\big\{\frac{1}{6}n(n+1)(2n+1)\big\}^2\) = \(9\big\{\frac{1}{36}n^2(n+1)^2(2n+1)^2\big\}\)
= \(\frac{1}{4}\)n2 (n+1)2(4n2+4n+1) = \(\frac{1}{4}\)n2 (n+1)2(4n (n+1)+1)
= \(\frac{1}{4}\)n2 (n+1)2 (1 + 8\(\big(\frac{1}{2}n(n+1)\big)\) = S3 (1+8S1).