(a) \(\frac{a}{2b}\)\(\sqrt{(3b-a)(a+b)}\)

Let the height of the tower PQ = h metres
Given, ∠QAP = α, ∠QBP = 2α,
∠QCP = 3α, AB = a, BC = b, CP = x (say)
Now, in rt. ΔQAP, tan α = \(\frac{QP}{AP}\) = \(\frac{h}{a+b+x}\)
⇒ a + b + \(x\) = h cot α ...(i)
In rt. Δ QBP,
tan α = \(\frac{QP}{BP}\) = \(\frac{h}{b+x}\)
b + \(x\) = h cot 2α ...(ii)
In rt. Δ QCP,
tan 3α = \(\frac{QP}{CP}\) = \(\frac{h}{x}\) ⇒ \(x\) = h cot 3α ...(iii)
Eq (i) – Eq (ii)
⇒ a = h (cot α – cot 2α) = h \(\bigg[\frac{\text{cos}\,\alpha}{\text{sin}\,\alpha}-\frac{\text{cos}\,2\alpha}{\text{sin}\,2\alpha}\bigg]\)
⇒ a = \(\frac{h[\text{cos}\,\alpha\,\text{sin}\,2\alpha-\text{sin}\,\alpha\,\text{cos}\,2\alpha}{\text{sin}\,\alpha\,\text{sin}\,2\alpha}\)
⇒ a = \(\frac{h\,\text{sin}\,(2\alpha-\alpha)}{\text{sin}\,\alpha\,\text{sin}\,2\alpha}\) = \(\frac{h\,\text{sin}\,\alpha}{\text{sin}\,\alpha\,\text{sin}\,2\alpha}\)
⇒ h = a sin 2α ...(iv)
Eqn (ii) – Eqn (iii)
⇒ b = h (cot 2α – cot 3α) = h \(\bigg[\frac{\text{cos}\,2\alpha}{\text{sin}\,2\alpha}-\frac{\text{cos}\,3\alpha}{\text{sin}\,3\alpha}\bigg]\)
⇒ a = \(\frac{h\,.\,[\text{cos}\,2\alpha\,\text{sin}\,3\alpha-\text{cos}\,3\alpha\,\text{sin}\,2\alpha}{\text{sin}\,2\alpha\,\text{sin}\,3\alpha}\)
⇒ a = \(\frac{h\,\text{sin}\,(3\alpha-2\alpha)}{\text{sin}\,2\alpha\,\text{sin}\,3\alpha}\) ⇒ b = \(\frac{h\,\text{sin}\,\alpha}{\text{sin}\,2\alpha\,\text{sin}\,3\alpha}\)
⇒ h = \(\frac{b\,\text{sin}\,2\alpha\,\text{sin}\,3\alpha}{\text{sin}\,\alpha}\) ....(v)
∴ From eqn (iv) and (v), we have
a sin 2α = \(\frac{b\,\text{sin}\,2\alpha\,\text{sin}\,3\alpha}{\text{sin}\,\alpha}\) ⇒ sin α = \(\frac{b}{a}\) sin 3α
⇒ sin α = \(\frac{b}{a}\) (3 sin α - 4 sin3 α) ⇒ 1 = \(\frac{3b}{a}\) - \(\frac{4b}{a}\) sin2 α
⇒ a = 3b – 4b sin2α ⇒ 4b sin2α = 3b – a
⇒ sin α = \(\sqrt{\frac{3b-a}{4b}}\) ⇒ cos α = \(\sqrt{1-\text{sin}^2\,\alpha}\)
= \(\sqrt{1-\frac{3b-a}{4b}}\) = \(\sqrt{\frac{b+a}{4b}}\)
From eqn (iv) we have h = a sin 2α
h = 2a sin a cos α
h = 2a . \(\sqrt{\frac{3b-a}{4b}}\) \(\sqrt{\frac{b+a}{4b}}\)
h = \(\frac{2a}{4b}\)\(\sqrt{(3b-a)(b+a)}\)
h = \(\frac{a}{2b}\)\(\sqrt{(3b-a)(a+b)}\).