(i) Magnitude of vectors \(\vec i+\vec j\)
= | \(\hat i +\hat j\)|
= \(\sqrt{1^2+1^2}=\sqrt2\)
tan θ = \(\frac{|\hat j|}{|\hat i|}=\frac{1}{1}\) = 1
or θ = \(tan^1\, 1\) = 45º with X-axis
(ii) Magnitude of vectors \(\hat i-\hat j\)
= | \(\hat i-\hat j\)|
= | \(\sqrt{1^2+(-1)^2}\) | = \(\sqrt2\)

tan θ = \(\frac{|-\hat j|}{|\hat i|}=\frac{-1}{1}\) = −1
θ = tan-1(−1)
= −45 with X-axis