Let the apparent depth be o1 for the object seen from μ1 then
\(o_1=\frac{μ_2h}{μ_13}\)
If seen from μ3 the apparent depth is o2.
\(o_2=\frac{μ_3}{μ2}(\frac{h}{3}+o_1)=\frac{μ_3}{μ_2}(\frac{h}{3}+\frac{μ_2h}{μ_13})=\frac{h}{3}(\frac{μ3}{μ2}+\frac{μ_3}{μ_1})\)
\(o_3=\frac{1}{μ_3}(\frac{h}{3}+o_2)=\frac{1}{μ_3}[\frac{h}{3}+\frac{h}{3}(\frac{μ_3}{μ_2}+\frac{μ_3}{μ_1})]\)
\(=\frac{h}{3}(\frac{1}{μ_1}+\frac{1}{μ_2}+\frac{1}{μ_3})\)
