Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
491 views
in Application of Integrals by (28.9k points)
closed by

The figure given below contains a straight line L with slope \(\sqrt{8}\) and a circle.

  1. Find the equation of the line L and circle. 
  2. Find the point of intersection P.
  3. Find the area of the shaded region.

1 Answer

+1 vote
by (28.2k points)
selected by
 
Best answer

1. The line L passes through origin and have slope 3, therefore its equation is y = \(\sqrt{8}\) x. The circle passes through origin and have radius 3, therefore its equation is x2 + y2 = 9.

2. We have, y =3x and x2 + y2 = 9
⇒ x2 + (\(\sqrt{8}\)x)2 = 9 ⇒ 9x2 = 9
⇒ x = 1
∴ y = \(\sqrt{8}\) × 1 = \(\sqrt{8}\).
Therefore, coordinate of ‘P’ is (1, \(\sqrt{8}\)).

3. Area of the shaded region

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...