Let the given statement be false i.e., ~ p ∶ \(\sqrt{11}\)
Is rational. The \(\sqrt{11}\) = \(\frac{p}{q}\) where p and q are coprime and q ≠ 0.
⇒ 11 = \(\frac{p^2}{q^2}\)
⇒ p2 = 11q2
⇒ 11 divides p ...(1)
∴ r ∈ z such that−
p = 11r
⇒ p2 = 121r
⇒ 11q2 = 121r2
⇒ q2 = 11r2
⇒ 11 divides q … (2)
From (1) & (2), we arrive at a contradiction, since p and q are coprime.
⇒ \(\sqrt{11}\) is irrational.