
Express the problem diagrammatically as shown above. The total transportation cost is given by
Z = 6x + 3y + 2.5{100 – (x + y)} + 4(60 – x) + 2(50 – y) + 3(-60 + (x + y))
⇒ Z = 2.5x + 1.5y + 410
100 – (x + y) ≥ 0 ⇒ x + y ≤ 100
60 – x ≥ 0 ⇒ x ≤ 60
50 – y ≥ 0 ⇒ y ≤ 50 – 60 + x + y ≥ 0 ⇒ x + y ≥ 60
Then the given LPP is
Minimise; Z = 2.5x + 1.5y + 410
x + y ≤ 100, x + y ≥ 60
0 ≤ x ≤ 60, 0 ≤ y ≤ 50

In the figure the shaded region ABCD is the feasible region. Here the region is bounded. The corner points are
A(60, 0), B(60, 40), C(50, 50), D(10, 50).
Given; Z = 2.5x + 1.5y + 410
Corner points |
Value of Z |
A |
Z = 2.5(60) + 1.5(0) +410 = 560 |
B |
Z = 2.5(60) + 1.5(40) + 410 = 620 |
C |
Z = 2.5 (50) +1.5(50) +410 = 610 |
D |
Z = 2.5(10) + 1.5(50) +410 = 510 |
Since minimum value of Z occurs at D, the soluion is Z = 510.