Let the points be A(4, 1), B(6, 5) and C(2, – 1)
AP ⊥ BC is drawn
Slope of line BC, m = \(\frac{−1\, −\,5}{2\, −\, 6}\) = \(\frac{3}{2}\)
Since AP ⊥ BC
∴ Slope of AP, m′ = − \(\frac{1}{m}\) = − \(\frac{2}{3}\)
∴ Equation of line AP is
y − 1 = − \(\frac{2}{3}\)(x − 4)
⇒ 2x + 3y – 11 = 0 …(1)
Let P divide BC in the ratio m : n
∴ Co-ordinates of P are \(\big(\frac{2m + 6n}{m + n}, \frac{−m + 5n}{m +n}\big)\)
Since P lies on AP, so (1)
⇒ 2.\(\frac{2m + 6n}{m + n}\) + 3.\(\big(\frac{−m + 5n}{m +n}\big)\) − 11 = 0
⇒ 4m + 12n - 3m + 15n - 11m – 11n = 0
⇒ \(\frac{m}{n}\) = \(\frac{16}{10}\)
⇒ m : n = 8 : 5