Let P(n) ∶ 2.7n + 3.5n − 5 is a multiple of 24.
Step 1: P(1) ∶ 2.7n + 3.51 − 5 = 14 + 15 − 5 = 24,
Which is a multiple of 24.
∴ P(1) is true.
Step 2: Let it be true for some k ∈ N, i.e,.
P(k): 2.7k + 3.5k − 5 = 24λ for some λ ∈ N. ...(i)
Step 3: To prove that
P(k + 1) ∶ 2.7k+1+3.5k+1−5 is also multiple of 24.
Now,
2.7k+1+3.5k+1−5
2.7k.7 + 3.5k.5 − 5
7(2.7k) + 5.(3.5k) − 5
7(24λ− 3.5k + 5) + 5.(3.5k) − 5
= 7.24λ − 21.5k + 15.5k + 35 − 5
= 7.24λ − 6(5k−5)
= 7.24λ − 6(4μ)
= 24(7λ − μ)
Which is a multiple of 24. For some λ,μ ∈ N.
∴ P(k + 1) is true whenever P(k) is true
Hence, by Principle of Mathematical Induction
P(n) in true for all n ∈ N.