(c) \(\left(\frac{2}{9},\frac{1}{4}\right)\)
Let AC be the pole and point P be the position on the ground. Then CB subtends α at P, BA subtends β at P.

Given,
∠CPA = θ.
Given,
θ = tan-1 \(\frac{1}{2}\)
⇒ tan θ= \(\frac{1}{2}\)
Also,
θ = α + β
⇒ tan θ = tan (α + β)
⇒ \(\frac{1}{2}\) = \(\frac{tan\,α\,+\,tan\,β}{1-tan\,α\,tan\,β}\)
Checking on all the given options,
(a) When (tan α, tan β) = \(\left(\frac{1}{4},\frac{1}{5}\right)\)
R.H.S = \(\frac{\frac{1}{4}\,+\,\frac{1}{5}}{1-\frac{1}{4}\times\frac{1}{5}}\)
= \(\frac{\frac{9}{20}}{\frac{19}{20}}\)
= \(\frac{9}{19}\) ≠ \(\frac{1}{2}\), not true
(b) When (tan α, tan β) = \(\left(\frac{1}{5},\frac{2}{9}\right)\)
R.H.S = \(\frac{\frac{1}{5}\,+\,\frac{2}{9}}{1-\frac{1}{5}\times\frac{2}{9}}\)
= \(\frac{\frac{19}{45}}{\frac{43}{45}}\)
= \(\frac{19}{43}\) ≠ \(\frac{1}{2}\), not true
(c) When (tan α, tan β) = \(\left(\frac{2}{9},\frac{1}{4}\right)\)
R.H.S = \(\frac{\frac{2}{9}\,+\,\frac{1}{4}}{1-\frac{2}{9}\times\frac{1}{4}}\)
= \(\frac{\frac{17}{36}}{\frac{34}{36}}\)
= \(\frac{1}{2}\), true.