Given:
mass, m1 = 10 mg
mass, m2 = 10 mg
distance, d = 0.20 m
The free body diagram is written as;

With the help of a free body diagram we have;
T cosθ = mg = 10 × 10−6 × 10 = 10−4 ......(1)
T sinθ = Fe
Here, Fe = k\(\frac{q^2}{r^2}\)
Tsinθ = k\(\frac{q^2}{d^2}\)
⇒ Tsinθ = k\(\frac{q^2}{d^2}\) = F
⇒ Tsinθ = k\(\frac{9 \times 10^9 \times q^2}{(0.2)^2}\) = F
⇒ Tsinθ = k\(\frac{9 \times 10^9 \times q^2}{(0.04)}\) = F .....(2)
Now, by dividing the equation (1) by (2) we have;
\(\frac{T_{\sin \theta}}{T_{\cos \theta}} = \frac{0.1}{\sqrt{24}}\)
⇒ tanθ = \(\frac{0.1}{\sqrt{24}} = \frac F{mg}\) .....(3)
Now, using equation (3) in equation (2) we have;
q = \(\frac{2\sqrt{10}}{3\sqrt{24}} \) × 10−8
⇒ q = 0.95 × 10−8
⇒ q = \(\frac{20}{21}\) × 10−8
Hence, a = 20.