Correct option is (2) \( \frac{-2Q}{3\sqrt 3 \pi \varepsilon_0a^2} (\hat x + \hat y + \hat z)\)
If we consider two point charges +Q and –2Q at origin, then +Q charge along with other seven +Q charges will produce zero net electric field at centre of cube due to symmetry. Now only remaining charge is –2Q at center.
So net electric field at centre will only be due to -2Q charge.
\(\vec E = \frac{kq}{r^3} \vec r\)
Here, \(\vec r = \frac a2 \hat i + \frac a2 \hat j + \frac a2\hat k\)
⇒ \(\vec E = \frac{K - (2Q)}{\left(\frac{a\sqrt 3}2\right)^3} \left(\frac a2 \hat i + \frac a2\hat j + \frac a2\hat k\right)\)
⇒ \(\vec E = \frac{-2Q}{3\sqrt 3 \pi \varepsilon_0a^2} (\hat i + \hat j + \hat k)\)
We can replace unit vectors \(\hat i , \hat j, \hat k \) with \(\hat x, \hat y, \hat z\).