Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
16.6k views
in Matrices by (33.5k points)
closed by

Express the following matrix as the sum of a symmetric and a skew-symmetric matrix.

\( \begin{bmatrix} 1 & 3 & 5 \\[0.3em] -6 & 8 &3 \\[0.3em] -4 &6 & 5 \end{bmatrix}.\)

1 Answer

+2 votes
by (36.3k points)
selected by
 
Best answer

Let A = \( \begin{bmatrix} 1 & 3 & 5 \\[0.3em] -6 & 8 &3 \\[0.3em] -4 &6 & 5 \end{bmatrix}\)and 

A' = \( \begin{bmatrix} 1 & -6 & -4 \\[0.3em] 3 & 8 &6 \\[0.3em] 5 &3 & 5 \end{bmatrix}\)

Let P = \(\frac{A+A'}{2} \) 

\(=\frac{1}{2} \begin{bmatrix} 2 & -3 & 1 \\[0.3em] -3 & 16 &9 \\[0.3em] 1 &9 & 10 \end{bmatrix}\)and

P' = \(\frac{1}{2} \begin{bmatrix} 2 & -3 & 1 \\[0.3em] -3 & 16 &9 \\[0.3em] 1 &9 & 10 \end{bmatrix}=P,\) 

Hence, \(\frac{A+A'}{2}\) is symmetric matrix.

Now,

Q = \(\frac{A-A'}{2}\) 

\(=\frac{1}{2} \begin{bmatrix} 0 & 9 & 9 \\[0.3em] -9 & 0 &-3 \\[0.3em] -9 &3 & 0 \end{bmatrix}\) 

Also,

Q' = \(\frac{1}{2} \begin{bmatrix} 0 & -9 &-9 \\[0.3em] 9 & 0 &3 \\[0.3em] 9 &-3 & 0 \end{bmatrix}\) 

\(=-\frac{1}{2} \begin{bmatrix} 0 & 9 &9 \\[0.3em] -9 & 0 &-3 \\[0.3em] -9 &3 & 0 \end{bmatrix}\) = - Q,

Hence, \(\frac{A-A'}{2}\) is a skew-symmetric matrix.

Hence, 

A = \((\frac{A+A'}{2})+(\frac{A-A'}{2})\)

= Symmetric matrix + Skew - symmetric matrix.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...