
Let R, h be the radius and height of inscribed cylinder respectively.
If V be the volume of cylinder then
V = πR2h

Differentiating with respect to h, we get
\(\frac{dV}{dh}=\) \(\pi(r^2-\frac{3h^2}{4})\) ....(i)
For maxima or minima
\(\frac{dV}{dh}=\) 0
⇒ \(\pi(r^2-\frac{3h^2}{4})\) = 0
⇒ \(r^2-\frac{3h^2}{4}=0\)
⇒ \(r=\frac{h\sqrt{3}}{2}\)
⇒ \(h=\frac{2r}{\sqrt{3}}\)
Differentiating (i) again with respect to h, we get
