Given,
A =\( \begin{bmatrix} 2 &3 \\[0.3em] 1 & 2 \end{bmatrix}\)and I =\( \begin{bmatrix} 1 &0 \\[0.3em] 0 & 1 \end{bmatrix}\) and
A2 = λA + μI
So,

[as rij = aij + bij + cij],
And to satisfy the above condition of equality, the corresponding entries of the matrices should be equal
Hence,
λ + 0 = 4 ⇒ λ = 4
And also,
2λ + μ = 7
Substituting the obtained value of λ in the above equation, we get
2(4) + μ = 7
⇒ 8 + μ = 7
⇒ μ = – 1
Therefore,
The value of λ and μ are 4 and – 1 respectively.