If the curve y = y(x) is the solution of the differential equation
\(2(x^2+x^{5/4}dy - y (x+x^{1/4})dx\) \(=2x^{9/4}dx, x>0\) which passes through the point \(\bigg(1,1-\frac{4}{3}log_e\, 2 \bigg),\) then the value of y(16) is equal
to :
(1) \(4\bigg(\frac{31}{3}+\frac{8}{3}log_e\, 3 \bigg)\)
(2) \(\bigg(\frac{31}{3}+\frac{8}{3}log_e\, 3 \bigg)\)
(3) \(4\bigg(\frac{31}{3}-\frac{8}{3}log_e\, 3 \bigg)\)
(4) \(\bigg(\frac{31}{3}-\frac{8}{3}log_e\, 3 \bigg)\)