Correct Answer is (B) \(\frac{\pi}{3}\)
Given: sin-1 x + sin-1 y = \(\frac{2\pi}{3}\)
Since we know that sin-1 x + cos-1 x = \(\frac{\pi}{2}\)
⇒ cos-1 x = \(\frac{\pi}{2}\)- sin-1 x
Similarly, cos-1 y = \(\frac{\pi}{2}\)- sin-1 y
Now consider cos-1 x + cos-1 y = \(\frac{\pi}{2}\)- sin-1 x + \(\frac{\pi}{2}\) - sin-1 y
= \(\frac{2\pi}{2}\) - [sin-1 x + sin-1 y]
= π - \(\frac{2\pi}{2}\)
= \(\frac{\pi}{3}\)