We are given that,
2\(\begin{bmatrix}
1& 3 \\[0.3em]
0 & x \\[0.3em]
\end{bmatrix}\)+\(\begin{bmatrix}
y& 0 \\[0.3em]
1 & 2 \\[0.3em]
\end{bmatrix}\)= \(\begin{bmatrix}
5& 6 \\[0.3em]
1 & 8 \\[0.3em]
\end{bmatrix}\)
We need to find the value of x and y.
Taking Left Hand Side (LHS) matrix of the equation,
LHS,
2\(\begin{bmatrix}
1& 3 \\[0.3em]
0 & x \\[0.3em]
\end{bmatrix}\)+\(\begin{bmatrix}
y& 0 \\[0.3em]
1 & 2 \\[0.3em]
\end{bmatrix}\)
Multiplying the scalar, 2 by each element of the matrix \(\begin{bmatrix}
1& 3 \\[0.3em]
0 & x \\[0.3em]
\end{bmatrix}\),

Adding the corresponding elements,

Equate LHS to Right Hand Side (RHS) equation,
\(\begin{bmatrix}
2+y& 6 \\[0.3em]
1 & 2x+2 \\[0.3em]
\end{bmatrix}\)= \(\begin{bmatrix}
5& 6 \\[0.3em]
1 &8 \\[0.3em]
\end{bmatrix}\)
We know that if we have,
\(\begin{bmatrix}
a_{11}& a_{12} \\[0.3em]
a_{21} & a_{22} \\[0.3em]
\end{bmatrix}\)= \(\begin{bmatrix}
b_{11}& b_{12} \\[0.3em]
b_{21} & b_{22} \\[0.3em]
\end{bmatrix}\)
This implies,
a11 = b11, a12 = b12, a21 = b21 and a22 = b22
Similarly,
The corresponding elements of two matrices are equal,
2 + y = 5 …(i)
6 = 6
1 = 1
2x + 2 = 8 …(ii)
We have equations (i) and (ii) to solve for x and y.
From equation (i),
2 + y = 5
⇒ y = 5 – 2
⇒ y = 3
From equation (ii),
2x + 2 = 8
⇒ 2x = 8 – 2
⇒ 2x = 6
⇒ x = 3
Thus,
We have x = 3 and y = 3.