Δ = \(\begin{vmatrix} cos\alpha\,cos\beta& cos\,\alpha\,sin\,\beta& -sin\,\alpha \\[0.3em] -sin\,\beta& cos\,\beta & 0 \\[0.3em] sin\,\alpha\,cos\,\beta & -sin\,\alpha\,sin\,\beta &cos\,\alpha \end{vmatrix}\)
Expanding along the second row,

⇒ |A| = sinβ (cosα×cosα sinβ + sinα × sinα sinβ) + cosβ (cosα cosβ × cosα + sinα×sinα cosβ) – 0
|A| = sin2β(cos2α + sin2α) + cos2β (cos2α + sin2α)
|A| = sin2β(1) + cos2β (1)
|A| = sin2β + cos2β
|A| = 1