Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
2.3k views
in Number System by (30.5k points)
closed by

Arrange the following rational numbers in ascending order:

 (i) \(\frac{4}{-9},\frac{-5}{12},\frac{7}{-18},\frac{-2}{3}\)

 (ii) \(\frac{-3}{4},\frac{5}{-12},\frac{-7}{16},\frac{9}{-24}\)

(iii) \(\frac{3}{-5},\frac{-7}{10},\frac{-11}{15},\frac{-13}{20}\)

(iv) \(\frac{-4}{7},\frac{-9}{14},\frac{13}{-28},\frac{-23}{42}\)

1 Answer

+1 vote
by (30.4k points)
selected by
 
Best answer

 (i)

\(\frac{4}{-9}=\frac{4\times-1}{-9\times-1}=\frac{-4}{9}\)

And,

\(\frac{7}{-18}=\frac{7\times-1}{-18\times-1}=\frac{-7}{18}\)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. LCM of 9, 12, 18 and 3 = 36

\(\frac{-4}{9}=\frac{-4\times4}{9\times4}=\frac{-16}{36}\)

\(\frac{-5}{12}=\frac{-5\times3}{12\times3}=\frac{-15}{36}\)

\(\frac{-7}{18}=\frac{-7\times2}{18\times2}=\frac{-14}{36}\)

\(\frac{-2}{3}=\frac{-2\times12}{3\times12}=\frac{-24}{36}\)

Clearly,

 -24 < -16 < -15 < -14

 Therefore,

\(\frac{-24}{36}<\frac{-16}{36}<\frac{-15}{36}<\frac{-14}{36}\)

Hence,

\(\frac{-2}{3}<\frac{4}{-9}<\frac{-5}{12}<\frac{7}{-18}\)

(ii)

\(\frac{5}{-12}=\frac{5\times-1}{-12\times-1}=\frac{-5}{12}\)

And,

\(\frac{9}{-24}=\frac{9\times-1}{-24\times-1}=\frac{-9}{24}\)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. LCM of 4, 12, 16 and 24 = 48

 \(\frac{-3}{4}=\frac{-3\times12}{4\times12}=\frac{-36}{48}\)

\(\frac{-5}{12}=\frac{-5\times4}{12\times4}=\frac{-20}{48}\)

\(\frac{-7}{16}=\frac{-7\times3}{16\times3}=\frac{-21}{48}\)

\(\frac{-9}{24}=\frac{-9\times2}{24\times2}=\frac{-18}{48}\)

Clearly, -36 < -21 < -20 < -18 

Therefore,

 \(\frac{-36}{48}<\frac{-21}{48}<\frac{-20}{48}<\frac{-18}{48}\)

Hence,

\(\frac{-3}{4}<\frac{-7}{16}<\frac{5}{-12}<\frac{9}{24}\)

(iii)

 \(\frac{3}{-5}=\frac{3\times-1}{-5\times-1}=\frac{-3}{5}\)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. LCM of 5, 10, 15 and 20 = 60

 \(\frac{-3}{5}=\frac{-3\times12}{5\times12}=\frac{-36}{60}\)

\(\frac{-7}{10}=\frac{-7\times6}{10\times6}=\frac{-42}{60}\)

\(\frac{-11}{15}=\frac{-11\times4}{15\times4}=\frac{-44}{60}\)

\(\frac{-13}{20}=\frac{-13\times3}{20\times3}=\frac{-39}{60}\)

Clearly, -44 < -42 < -39 < -36 

Therefore,

  \(\frac{-44}{60}<\frac{-42}{60}<\frac{-39}{60}<\frac{-36}{60}\)

Hence,

\(\frac{-11}{15}<\frac{-7}{10}<\frac{-13}{20}<\frac{3}{-5}\)

(iv)

\(\frac{13}{-28}=\frac{13\times-1}{-28\times-1}=\frac{-13}{28}\)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. LCM of 7, 14, 28 and 42 = 84

 \(\frac{-4}{7}=\frac{-4\times12}{7\times12}=\frac{-48}{84}\)

\(\frac{-9}{14}=\frac{-9\times-6}{14\times6}=\frac{-54}{84}\)

\(\frac{-13}{28}=\frac{-13\times3}{28\times3}=\frac{-39}{84}\)

\(\frac{-23}{42}=\frac{-23\times2}{42\times2}=\frac{-46}{84}\)

Clearly, -54 < -48 < -46 < -39 

Therefore,

   \(\frac{-54}{84}<\frac{-48}{84}<\frac{-46}{84}<\frac{-39}{84}\)

Hence,

\(\frac{-9}{14}<\frac{-4}{7}<\frac{-23}{42}<\frac{13}{-28}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...