Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
7.7k views
in Sets, Relations and Functions by (25.8k points)
closed by

\(f:R→R :f(x)=\begin{cases}1,\text{ if x is rational}\\ -1,\text{ if x is irrational}\end{cases}\)

Show that f is many-one and into.

1 Answer

+1 vote
by (27.7k points)
selected by
 
Best answer

To prove: function is many-one and into

Given: \(f:R→R :f(x)=\begin{cases}1,\text{ if x is rational}\\ -1,\text{ if x is irrational}\end{cases}\)

We have,

f(x) = 1 when x is rational

It means that all rational numbers will have same image i.e. 1

⇒ f(2) = 1 = f (3) , As 2 and 3 are rational numbers

Therefore f(x) is many-one

The range of function is [{-1},{1}] but codomain is set of real numbers.

Therefore f(x) is into

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...