Correct answer is C. \(\pm\frac{\pi}6\)
We are given that, tan-1 (cot θ) = 2θ
We need to find the value of θ.
We have, tan-1 (cot θ) = 2θ
Taking tangent on both sides,
⇒ tan [tan -1 (cot θ)] = tan 2θ
Using property of inverse trigonometry, tan(tan -1 A) = A
⇒ cot θ = tan 2θ
Or,
⇒ tan 2θ = cot θ
Using the trigonometric identity,

Thus
θ = \(\pm\frac{\pi}6\)