\(\begin{vmatrix}
3x-8 & 3 & 3 \\[0.3em]
3 & 3x-8 & 3 \\[0.3em]
3 & 3 & 3x-8
\end{vmatrix}\) = 0
Let Δ = \(\begin{vmatrix}
3x-8 & 3 & 3 \\[0.3em]
3 & 3x-8 & 3 \\[0.3em]
3 & 3 & 3x-8
\end{vmatrix}\)
We need to find the roots of Δ = 0.
Recall that the value of a determinant remains same if we apply the operation Ri→ Ri + kRj or Ci→ Ci + kCj.
Applying C1→ C1 + C2, we get

Expanding the determinant along C1, we have
Δ = (3x – 2)(1)[(3x – 11)(3x – 11) – (0)(0)]
⇒ Δ = (3x – 2)(3x – 11)(3x – 11)
∴ Δ = (3x – 2)(3x – 11)2
The given equation is Δ = 0.
⇒ (3x – 2)(3x – 11)2 = 0
Case – I :
3x – 2 = 0
⇒ 3x = 2
∴ x = \(\frac{2}{3}\)
Case – II :
(3x – 11)2 = 0
⇒ 3x – 11 = 0
⇒ 3x = 11
∴ x = \(\frac{11}{3}\)
Thus,
\(\frac{2}{3}\) and \(\frac{11}{3}\) are the roots of the given determinant equation.