Given : -
Three equation
2x + y – 2z = 4
x – 2y + z = – 2
5x – 5y + z = – 2
Tip : - We know that
For a system of 3 simultaneous linear equation with 3 unknowns
(i) If D ≠ 0, then the given system of equations is consistent and has a unique solution given by
x = \(\frac{D_1}{D}\), y = \(\frac{D_2}{D}\) and z = \(\frac{D_3}{D}\)
(ii) If D = 0 and D1 = D2 = D3 = 0, then the system is consistent and has infinitely many solution.
(iii) If D = 0 and one of D1 , D2 and D3 is non – zero, then the system is inconsistent.
Now,
We have,
2x + y – 2z = 4
x – 2y + z = – 2
5x – 5y + z = – 2
Lets find D
⇒ D = \(\begin{vmatrix} 2 & 1 & -2 \\[0.3em] 1 & -2 & 1 \\[0.3em] 5 &-5 &1 \end{vmatrix}\)
Expanding along 1st row
⇒ D = 2[ – 2 – ( – 5)(1)] – (1)[(1)1 – 5(1)] + ( – 2)[ – 5 – 5( – 2)]
⇒ D = 2[3] – 1[ – 4] – 2[5]
⇒ D = 0
Again,
D1 by replacing 1st column by B
Here,
B = \(\begin{vmatrix} 4 \\[0.3em] -2\\[0.3em]-2 \end{vmatrix}\)
⇒ D1 = \(\begin{vmatrix} 4 & 1 & -2 \\[0.3em]-2 & -2 & 1 \\[0.3em] -2 &-5 &1 \end{vmatrix}\)
⇒ D1 = 4[ – 2 – ( – 5)(1)] – (1)[( – 2)1 – ( – 2)(1)] + ( – 2)[( – 2)( – 5) – ( – 2)( – 2)]
⇒ D1 = 4[ – 2 + 5] – [ – 2 + 2] – 2[6]
⇒ D1 = 12 + 0 – 12
⇒ D1 = 0
Also,
D2 by replacing 2nd column by B
Here,
B = \(\begin{vmatrix} 4 \\[0.3em] -2\\[0.3em]-2 \end{vmatrix}\)
⇒ D2 = \(\begin{vmatrix} 2 & 4 & -2 \\[0.3em]1 & -2 & 1 \\[0.3em] 5 &-2 &1 \end{vmatrix}\)
⇒ D2 = 2[ – 2 – ( – 2)(1)] – (4)[(1)1 – (5)] + ( – 2)[ – 2 – 5( – 2)]
⇒ D2 = 2[ – 2 + 2] – 4[ – 4] + ( – 2)[8]
⇒ D2 = 0 + 16 – 16
⇒ D2 = 0
Again,
D3 by replacing 3rd column by B
Here,
B = \(\begin{vmatrix} 4 \\[0.3em] -2\\[0.3em]-2 \end{vmatrix}\)
⇒ D3 = \(\begin{vmatrix} 2 & 1 & 4 \\[0.3em]1 & -2 & -2 \\[0.3em] 5 &-5 &-2 \end{vmatrix}\)
⇒ D3 = 2[4 – ( – 2)( – 5)] – (1)[( – 2)1 – 5( – 2)] + 4[1( – 5) – 5( – 2)]
⇒ D3 = 2[ – 6] – [8] + 4[ – 5 + 10]
⇒ D3 = – 12 – 8 + 20
⇒ D3 = 0
So, here we can see that
D = D1 = D2 = D3 = 0
Thus,
Either the system is consistent with infinitely many solutions or it is inconsistent.
Now, by 1st two equations, written as
x – 2y = – 2 – z
5x – 5y = – 2 – z
Now by applying Cramer’s rule to solve them,
New D and D1, D2
⇒ D = \(\begin{vmatrix} 1 & -2 \\[0.3em] 5 & -5 \\[0.3em] \end{vmatrix}\)
⇒ D = – 5 + 10
⇒ D = 5
Again,
D1 by replacing 1st column with
⇒ B = \(\begin{vmatrix} -2-z \\[0.3em] -2-z \\[0.3em] \end{vmatrix}\)
⇒ D1 = \(\begin{vmatrix} -2-z &-2\\[0.3em] -2-z&-5 \\[0.3em] \end{vmatrix}\)
⇒ D1 = 10 + 5z – ( – 2)( – 2 – z)
⇒ D1 = 6 + 3z
Again,
D2 by replacing 2nd column with
⇒ B = \(\begin{vmatrix} -2-z \\[0.3em] -2-z \\[0.3em] \end{vmatrix}\)
⇒ D2 = \(\begin{vmatrix} 1&-2-z \\[0.3em]5& -2-z \\[0.3em] \end{vmatrix}\)
⇒ D2 = – 2 – z – 5 ( – 2 – z)
⇒ D2 = 8 + 4z
Hence, using Cramer’s rule

And z = k
By changing value of k you may get infinite solutions.