Given,
Total surface area of hollow cylinder = 4620 cm2
Area of base ring = 115.5 cm2
Height of cylinder = 7 cm
Let outer radius = R cm , inner radius = r cm
So,
Area of hollow cylinder = 2π(R2 - r2) + 2πRh + 2πrh
= 2π(R + r)(R + r) + 2πh(R + r) = 2πh(R + r)(h + R - r)
Area of base = π(R2 - r2)
∴ \(\frac{surface\,area}{area\,of\,base}\) = \(\frac{4620}{115.5}\)
= \(\frac{[2π(R+r)(h+R-r)}{[π(R+r)(R-r)]}\) = \(\frac{4620}{115.5}\)
= \(\frac{h+t}{t}\) = \(\frac{20}{1}\)
= h + t = 20t
= t = \(\frac{h}{19}\) = \(\frac{7}{19}\)
Thickness of cylinder = \(\frac{7}{19}\) cm