Correct Answer is (C) 3
Given:
xy - logey = 1
xy = logey + 1
Differentiate w.r.t. ‘x’ on both sides;
\(y+x\frac{dy}{dx}=\frac{1}{y}\frac{dy}{dx}\)
\(\frac{dy}{dx}(\frac{1}{y}-x)=y\)
\(\frac{dy}{dx}=\frac{y^2}{(1-xy)}\)
\((\frac{dy}{dx})^2=\begin{bmatrix}\frac{y^2}{(1-xy)}\end{bmatrix}^2\)
\(=\frac{y^4}{(1-xy)^2}\)
\(\frac{d}{dx}[\frac{dy}{dx}]=\frac{d}{dx}[\frac{y^2}{(1-xy)}]\)
\(=\frac{1}{(1-xy)^2}\begin{Bmatrix}2y\frac{dy}{dx}(1-xy)-y^2(-y+x\frac{dy}{dx})\end{Bmatrix}\)





Since,

So,



λ = 3