(i) \(\frac{3\sqrt2-2\sqrt3}{3\sqrt2+2\sqrt3}+\frac{\sqrt12}{\sqrt3-\sqrt2}\)
= \(\frac{(3\sqrt2-2\sqrt3)(3\sqrt2-2\sqrt3)}{18-12}\) + \(\frac{2\sqrt3(\sqrt3+\sqrt2)}{3-2}\)

(ii) \(\frac{\sqrt5+\sqrt3}{\sqrt5-\sqrt3}+\frac{\sqrt5-\sqrt3}{\sqrt5+\sqrt3}\)
= \(\frac{[(\sqrt5+\sqrt3)(\sqrt5+\sqrt3)+(\sqrt5-\sqrt3)(\sqrt5-\sqrt3)]}{5-3}\)
= \(\frac{8+2\sqrt15+8-2\sqrt15}{2}\)
= 8