Option : (B)
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\(\lim\limits_{x \to a}f(x)\) = f(a)
\(\lim\limits_{x \to a^+}f(a+h)\) = \(\lim\limits_{x \to a^-}f(a-h)\) = f(a)
Given :-
\(f(x) = \begin{cases} \frac{\sqrt{1+px}\,-\sqrt{1-px}}{x} &, \quad-1≤ x <{0}\\ \frac{2+1}{x-2} &, \quad \text0≤ x≤{ 1} \end{cases} \)
