Given:
The curve y = 3x2 + 4 and the Slope of the tangent is \(\frac{-1}{6}\)
y = 3x2 + 4
Differentiating the above w.r.t x
⇒ \(\frac{dy}{dx}\) = 2 x 3x2 – 1 + 0
⇒ \(\frac{dy}{dx}\) = 6x ...(1)
Since, tangent is perpendicular to the line,
\(\therefore\) The Slope of the normal = \(\frac{-1}{\text{The Slope of the tangent}}\)
i.e, \(\frac{-1}{6}\) = \(\frac{-1}{6x}\)
⇒ \(\frac{1}{6}\) = \(\frac{1}{6x}\)
⇒ x = 1
Substituting x = 1 in y = 3x2 + 4,
⇒ y = 3(1)2 + 4
⇒ y = 3 + 4
⇒ y = 7
Thus, the required point is (1,7).