Option : (A)
Formula :-
(i) A function f(x) is said to be continuous at a point x = a of its domain, if
\(\lim\limits_{x \to a}f(x)\) = f(a)
\(\lim\limits_{x \to a^+}f(a+h)\) = \(\lim\limits_{x \to a^-}f(a-h)\) = f(a)

Given :-
\(f(x) = \begin{cases} a\,sin\frac{\pi}{2}(x+1) &,x \leq{1}\\ \frac{tan\,x-sin\,x}{x^3} &, x>{ 0} \end{cases} \)
Function f(x) is continuous at x = 0
