If y =(1 + \(\cfrac{1}{\text x}\))x, then \(\cfrac{dy}{d\mathrm x} \) =
A.\(\Big(1+\cfrac{1}{\text x}\Big)^{\text x}\)\(\Big\{log\Big(1+\cfrac{1}{\text x}\Big)\)\(-\cfrac{1}{\text x+1}\Big\}\)
B. \(\Big(1+\cfrac{1}{\text x}\Big)^{\text x}\)log\(\Big(1+\cfrac{1}{\text x}\Big)\)
C.\(\Big(1+\cfrac{1}{\text x}\Big)^{\text x}\)\(\Big\{log(\text x+1)-\cfrac{\text x}{\text x+1}\Big\}\)
D. \(\Big(1+\cfrac{1}{\text x}\Big)^{\text x}\)\(\Big\{log\Big(\text x+\cfrac{1}{\text x}\Big)+\cfrac{1}{\text x + 1}\Big\}\)