Given that,
CD bisected AB at O
To prove :
Area (ΔABC) = Area (ΔABD)
Construction :
CP perpendicular to AB and DQ perpendicular to AB
Proof :
Area (ΔABC) = \(\frac{1}{2}\)(AB x CP) ...(i)
Area (ΔABD) = \(\frac{1}{2}\)(AB x DQ) ...(ii)
In ΔCPO and ΔDQO,
We have,
∠CPO = ∠DQO
(Each 90°)
Given that,
CO = DO
∠COP = ∠DOQ
(Vertically opposite angle)
Then,
by AAS congruence rule,
ΔCPO ≅ ΔDQO
Therefore,
CP = DQ
(By c.p.c.t)
Thus,
Area (ΔABC) = Area (ΔABD)
Hence, proved