Given: \(3(\frac{3x-1}{2x+3})-2(\frac{2x+3}{3x-1})=5;x\neq\frac{1}{3},-\frac{3}{2}\)
to find: Solution of the above quadratic equation.
Solution: In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.
\(3(\frac{3x-1}{2x+3})-2(\frac{2x+3}{3x-1})=5;x\neq\frac{1}{3},-\frac{3}{2}\)

⇒ 3(9x2 + 1 – 6x) – 2(4x2 + 9 + 12x)
= 5(6x2 – 3 + 7x)
⇒ 27x2 + 3 – 18x - 8x2 - 18 – 24x
= 30x2 - 15 + 35x
⇒ 19x2 - 42x – 15
= 30x2 - 15 + 35x
⇒19x2 - 30x2 - 42x – 35x - 15 + 15 = 0
⇒ -11x2 - 77x = 0
⇒ 11x2 + 77x = 0
⇒ 11x(x + 7) = 0
⇒ x =0 and (x + 7)=0
⇒ x = 0 and x = -7
⇒ x = 0, - 7