\(\int\limits_0^{\pi/6} \)cos x \(\times\)cos (2x) dx = \(\int\limits_0^{\pi/6} \)cos x \(\times\)(cos2x - 1) dx
⇒ \(\int\limits_0^{\pi/6} \)cos x \(\times\)cos (2x) dx = \(\int\limits_0^{\pi/6} \)(2cos3 x -cos x dx)
⇒ \(\int\limits_0^{\pi/6} \)cos x \(\times\)cos (2x) dx = 2\(\int\limits_0^{\pi/6} \)cos3x dx - \(\int\limits_0^{\pi/6} \) cos x dx
We know,

Let sin x = t. Hence, cos x dx = dt. For second expression,

