Let the natural numbers be ‘a’ and ‘b’.
Given, difference of two natural numbers is 3 and difference of their reciprocals is 3/28
⇒ a – b = 3
⇒ a = b + 3
and 1/b – 1/a
= 3/28
⇒ 1/b – 1/(b + 3) = 3/28
⇒ 28(b – b – 3) = -3(b2 + 3b)
⇒ b2 + 3b - 28 = 0
⇒ b2 + 7b – 4b – 28 = 0
⇒ b(b + 7) – 4(b + 7) = 0
⇒ (b – 4)(b + 7) = 0
⇒ b = 4
Numbers are, 4, 7