Given Definite Integral can be written as:
⇒ I(x) = \(\int\limits_0^{π/2}\sqrt{sin\,\phi} \) cos5 ɸ dɸ
⇒ I(x) = \(\int\limits_0^{π/2}\sqrt{sin\,\phi} \) cos4ɸ dɸ
Let us assume sinϕ = t,
Differentiating w.r.t ϕ on both sides we get,
⇒ d(sinϕ) = d(t)
⇒ dt = cosϕ dϕ……(2)
Upper limit for the Definite Integral:
⇒ ϕ = \(\cfrac{\pi}2\) ⇒ t = sin \((\cfrac{\pi}2)\)
⇒ t = 1....(3)
Lower limit for the Definite Integral:
⇒ ϕ=0 ⇒ t = sin(0)
⇒ t = 0……(4)
We know that cos2ϕ = 1-sin2ϕ
⇒ cos2ϕ = 1 – t2……(5)
Substituting (2),(3),(4),(5) in the eq(1), we get,

We know that:

We know that:

[here f’(x) is derivative of f(x))
