Given Definite Integral can be written as:
⇒ I(x) = \(\int\limits_0^{\pi/3}\cfrac{cos\text x}{3+4sin\text x}d\text x \)....(1)
Let us assume 3 + 4sinx = y
Differentiating w.r.t x on both sides we get,
⇒ d(3 + 4sinx) = d(y)
⇒ 4cosx dx = dy
⇒ cos x dx = \(\cfrac{dy}4\).......(2)
Lower limit for the Definite Integral:
⇒ x = 0 ⇒ y = 3 + 4sin(0)
⇒ y = 3 + 0
⇒ y = 3……(3)
Upper limit for the Definite Integral:

Substituting (2),(3),(4) in the eq(1) we get,

We know that:
\(\int\cfrac{d\text x}{\text x}\) = log x + c
We know that:

[here f’(x) is derivative of f(x))
