Given Definite Integral can be written as:
⇒ I(x) = \(\int\limits_0^{\pi/2}\cfrac{sin\text x\,cos\,\text x}{1+sin^4\text x}d\text x\)......(1)
Let us assume, y = sin2x
Differentiating w.r.t x on both sides we get,
⇒ d(y) = d(sin2x)
⇒ dy = 2sinxcosxdx
⇒ sin x cos x dx = \(\cfrac{dy}2\)......(2)
Upper limit for the Definite Integral:
⇒ x = \(\cfrac{\pi}2\) ⇒ y = sin2\(\cfrac{\pi}2\)
⇒ y = 1......(3)
Lower limit for the Definite Integral:
⇒ x = 0 ⇒ y = sin20
⇒ y = 0……(4)
Substituting (2),(3),(4) in the eq(1) we get,


[here f’(x) is derivative of f(x))
