Convert cotx in form of sinx and cosx.
⇒ cot x = \(\frac{cos\,x}{sin\,x}\)
∴ The equation now becomes,

Assume,
cosx + sinx = t
∴ d(cosx + sinx) = dt
= cosx - sinx
∴ dt = cosx – sinx
⇒ \(\int\frac{dt}{t}\)
= ln|t| + c
But,
t = cosx + sinx
∴ ln|cosx + sinx| + c.