Multiplying and dividing the numerator by e we get the given as
⇒ \(\frac{1}{e}\)\(\int\frac{e^{x-1}+x^{e-1}}{e^x+x^6}\)dx …(1)
Assume,
ex + xe = t
⇒ d(ex + xe )= dt
⇒ ex + exe-1 = dt
Substituting t and dt in equation 1 we get
⇒ \(\frac{1}{e}\int\frac{dt}{t}\)
= ln|t| + c
But,
t = ex + xe
∴ ln| ex + xe | + c.