The denominator is of the form cosC - cosD
= - 2sin(\(\frac{c+d}{2}\)).sin (\(\frac{c-d}{2}\))
∴ cos3x - cosx = - 2sin(\(\frac{3+1}{2}x\)).sin (\(\frac{3-1}{2}x\))
∴ cos3x - cosx = - 2sin2x.sinx
- 2sin2x.sinx = - 2.2.sinx.cosx.sinx
- 2sin2x.sinx= - 4sin2x.cosx
Also,
sin2x + cos2x = 1
