To find: \(\int\limits_{1}^{3}
\) (3x2 + 1)dx
Formula used:

where,

Here, f(x) = 3x2 + 1 and a = 1

Now, by putting x = 1 in f(x) we get,
f(1) = 3(12) + 1 = 3(1) + 1 = 3 + 1 = 4
f(1 + h)
= 3(1 + h)2 + 1 = 3{h2 + 12 + 2(h)(1)} + 1
= 3(h)2 + 3 + 3(2h) + 1
= 3(h)2 + 4 + 6h
Similarly, f(1 + 2h)
= 3(1 + 2h)2 + 1
= 3{2(2h)2 + 12 + 2(2h)(1)} + 1
= 3(2h)2 + 3 + 3(4h) + 1
= 3(2h)2 + 4 + 12h
{∵ (x + y)2 = x2 + y2 + 2xy}

Put,
h = \(\cfrac2n\)
Since,

⇒ I = 28
Hence, the value of
