Given,
I = \(\int\frac{x}{\sqrt{-x^2+x+8}}\)dx
Integral is of form
\(\int\frac{px+q}{\sqrt{ax^2+bx+c}}\)dx
Writing numerator as,
px + q = λ \(\{\frac{d}{dx}(ax^2+bx+c)\}+μ \)
⇒ px + q = λ(2ax + b) + μ
⇒ x = λ (-2x + 1) + μ
∴ λ = -1/2 and μ = -1/2
Let x = -1/2(-2x + 1) – 1/2 and split,


