We have been given that, \(\vec a+2\vec b+3\vec c,\) \(2\vec a+\vec b+3\vec c\) and \(\vec a+\vec b +\vec c\)
We can form a relation using these three vectors. Say,

Compare the vectors \(\vec a,\vec b\) and \(\vec c\) We get
1 = 2x + y …(1)
2 = x + y …(2)
3 = 3x + y …(3)
Solving equation (1) and (2) for x and y,

⇒ x = -1
Put x = –1 in equation (2), we get
⇒ 2 = x + y
⇒ 2 = –1 + y
⇒ y = 2 + 1
⇒ y = 3
Substituting x = –1 and y = 3 in equation (3), we get
3 = 3x + y
Or 3x + y = 3
⇒ 3(–1) + 3 = 3
⇒ –3 + 3 = 3
⇒ 0 ≠ 3
∵, L.H.S ≠ R.H.S
⇒ The value of x and y doesn’t satisfy equation (3).
Thus, \(\vec a+2\vec b+3\vec c,\) \(2\vec a+\vec b+3\vec c\) and \(\vec a+\vec b +\vec c\) are not coplanar.