\(\sqrt{\frac{1+sinA}{1-sinA}}\) = \(\sqrt{\frac{1+sinA}{1-sinA}}\times \sqrt{\frac{1+sinA}{1+sinA}}\)
= \(\sqrt{\frac{(1+sinA)^2}{1-sin^2A}}\)
= \(\sqrt{\frac{(1+sinA)^2}{cos^2A}}\)
= \(\frac{1+sinA}{cosA}\)
= \(\frac{1}{cosA}+\frac{sinA}{cosA}\)
= secA + tanA
Hence Proved.