In the given parts use:
sin(90° - θ) = cosθ
cos(90° - θ) = sinθ
sec(90° - θ) = cosecθ
cosec(90° - θ) = secθ
tan(90° - θ) = cotθ
cot(90° - θ) = tanθ
(i) sinθ sin(90° - θ) - cosθ cos(90° - θ) = 0
solve LHS

Which is equal to RHS.
(ii)

solve LHS, Use: sinθ = \(\frac{1}{cosecθ}\), \(secθ = \frac{1}{cosθ}\)
solve,

Which is equal to RHS.
(iii) \(\frac{tan(90° - θ) cotA}{cosec^2A} - cos^2A =0\)
solve LHS, use:
\(tanθ =\frac{sinθ}{cosθ}\), cotθ = \(\frac{cosθ}{sinθ}\)
sinθ = \(\frac{1}{cosecθ}\), secθ =\(\frac{1}{cosθ}\)
solve,

Which is equal to RHS.