sinθ + cosθ = x
Squaring on both sides
(sinθ + cosθ)2 = x2
⇒ sin2θ + cos2θ + 2sinθcosθ = x2
∴ sinθcosθ = \(\frac{x^2-1}{2}\) ...(1)
We know sin2θ + cos2θ = 1
combining both since
(sin2θ + cos2θ)3 = (1)3
sin6θ + cos6θ + 3sinθCos2θ (sin2θ + cos2θ) = 1
⇒ sin6θ + cos6θ = 1- 3sin2θCos2θ
= 1- \(\frac{3(x^2-1)^2}{4}\) from -(1)
sin6θ + cos6θ = \(\frac{4-3(x^2-1)^2}{4}\)
Hence Proved.